
,,
. .

. .

A Concurrent Implementation of
the Cascade-Correlation Algorithm,

Using the Time Warp Operating System

Paul Springer
Jet Propulsion Laboratory

California Institute of Technology

Abstract

This paper discusses the method in which the Cascade-Correlation algorithm was
parallelized in such a way that it could be run using the Time Warp Operating Sys-
tem (TWOS). TWOS is a special purpose operating system designed to run parallel
discrete event simulations with maximum efficiency on parallel or distributed com-
puters. Timings are also given to indicate how efficient the parallelization process
was for a particular benchmark.

1. Introduction

Cascade-correlation has been shown to have important advantages over back propa-
gation as a learning algorithm for neural networks. Because cascade-correlation
builds hidden units into the neural network as it goes, the neural network designer
is relieved of the task of having to guess at the best configuration of hidden units for
a particular problem. Studies have shown cascade-correlation to be a faster algo-
rithm and better able to converge. [1; 2] Whitley and Karunanithi [3] write that cas-
cade-correlation also shows very good generalization characteristics.

Compared to the research work which has gone into parallelizing back propagation,
not much has been published regarding the parallelization of the cascade-correla.
tion algorithm. Given the advantages of cascade-correlation, research in this area.
would seem to be worthwhile. This paper describes one such effort.

Section 2 of the paper describes some of the fimdamentals of cascade-correlation.
Section 3 describes the Time Warp Operating System. Details of the implementa-
tion appear in section 4, and section 5 describes the parallelism in this implementa-
tion. Section 6 concludes with some performance measurements that were done on
a BBN GP1 000 parallel computer.

2. Cascade-Correlation

Cascade-correlation is a neural network algorithm which not only trains a neural
network, but also dynamically builds the network architecture. The number of out-
put units is specified initially, and there are no hidden units at the outset. In the
course of training, hidden units are added to the network layer by layer, with a sin-
gle hidden unit in each layer.

The cascade-correlation algorithm cycles through two phases. In the first phase,
the output units are trained and their weights adjusted until no further progress is
made. Fahlman’s quickprop algorithm [4] is used to adjust the weights in this

-,.

,,

phase.

In the second phase, a number of candidate units are set up to receive inputs from
the network’s external inputs as well as inputs from the hidden units which have
previously been added to the network. Each candidate unit is trained to maximize
C, the correlation of its output with the error signal previously existing in the net-
work. The formula is

(1)

where yp represents the candidate’s output for pattern p, eoP is the residual error

observed in the active net~ork for output unit o , on pattern p. The average of y
over all patterns is represented~y y, and e. represents the average of e. over all
patterns p.

C is maximized by gradient ascent using the partial derivative of C with respect to
each of the candidate unit’s incoming weights Wi:

(2)

where so is the sign of the correlation between the candidate’s value and output o,
f’p is the derivative of the candidate unit’s activation function for pattern p with re-

spect to the sum of its
unit i for pattern p.

nputs, and Ii ~ is the input the candidate unit receives from,

outputs

0 0

Hidden
nodes

o T T

‘nputs=#=#=
Figure 1

At the end of this second phase, the candidate unit with the best correlation is cho-
sen to be the next hidden unit to be added to the network (see Figure 1). Its weights
are then frozen, and the first phase is started again by retraining the output units
using the inputs available previously, as well as the signal from the new hidden
unit. A more detailed explanation of cascade-correlation appears in [1].

3. The Time Warp Operating System

When a program is decomposed into individual components or objects which run in
parallel, there generally must be some way to synchronize these objects, Optimistic
synchronization has shown itself to be one of the best ways to accomplish this. Op-
timistic synchronization permits an object to execute even though the object in
question may not yet have all the inputs it needs. The synchronization method
takes care of any errors that may arise due to the premature execution of an object.

In contrast, conservative methods of synchronization may not be able to extract as
much parallelism from a discrete event simulation as optimistic methods can. A
simulation using a conservative method will block if there is even a remote chance
of a causality error occurring. An optimistic method would not block under this cir-
cumstance, but would proceed. If no causality error resulted, the optimistic method
wins. If an event was run out of order, this situation is detected and the optimistic
method restores the state of the simulation to what it was previously, and runs the
events in the proper order. For a good overview which contrasts these techniques,
see [51.

The Time Warp Operating System (TWOS) uses the best known method of optimis-
tic synchronization, Time Warp. Time Warp is based on the concept of virtual time,
When a message arrives for an object, and the message is to be received at a time
earlier than the object’s current simulation time, the obj ect’s current simulation
time is rolled back to that earlier time, and execution is reinitiated. See [6] for a
more detailed explanation of Time Warp.

This implementation of cascade-correlation was written in such a way that it could
be run in parallel as a TWOS application. It was written in the form of a discrete
event simulation, with each epoch being run at a discrete point in simulation time.

Time Warp requires that objects communicate with each other by means of messag
es which contain time tags to indicate at what simulation time the receiving object
should begin execution of an event. An object begins executing at a specific simu] a-
tion time only when it has received a message which is tagged with that specific re.
ceive time.

A key characteristic of Time Warp is that an object may execute at a simulation
time when not all messages for that time have yet been received by that object. If
an object receives a message with a receive time earlier than the current simulation
time at which the object is executing, the object is rolled back to the earlier time,
The rolled-back object will then re-execute its work starting from the earlier time.

Suppose an object has just completed processing a message which had a receive
time of 1300. Now suppose a message arrives with a receive time of 1200. Any
modifications which the object made to its environment between time 1200 and time
1300 must be reversed. In particular, previous values of variables must also be re-
stored. TWOS accomplishes this by forcing the user to group any variables which
persist from one event into another into a special structure called a state. After
each event, a copy of the object’s state is saved, so that the object can be rolled back
to that state, if necessary.

Two other types of variables are supported by TWOS: stack variables and read-only
global variables. As the name indicates, stack variables are allocated space on the
object’s stack, and disappear when the object finishes executing the current event.
Global variables, which could be shared between objects, present something of a
problem, however. TWOS saves only previous versions of an object’s state, and does
not attempt to save previous versions of global variables. Therefore, general pur-
pose global variables are not permitted in a TWOS application. However, TWOS
does permit a special kind of global variable called a read-only global. These global
variables can be initialized only once, before the body of the simulation begins.
Once initialized, they can never be modified.

TWOS allows the use of dynamically allocated memory, but not by means of a stan-
dard system call. Instead an application must use a special TWOS call to allocate
the memory. This call ties the allocated memory to the state of the object making
the memory request. TWOS creates a version of an object’s dynamically allocated
memory for each event executed by the object, handling this process the same way
that it does for the object’s states.

4. Implementation Details

There were three main challenges in implementing the cascade correlation algo-
rithm to work with TWOS: (1) making an object based design; (2) setting up each
object’s state; and (3) setting up the read-only global area.

I decided upon four types of objects for the application: an output type, an output
analyst type, a candidate type, and a candidate analyst type. All TWOS objects are
instantiated at the beginning of a run, by means of a TWOS configuration file which
specifies and names each object.

An output type of object is created for each output unit in the network. After initial-
izing itself, an output object makes a pass through the set of training patterns. At
the end of each such epoch, the object calculates the error and various other mea
surements which are used to adjust the weights for the next epoch, using the quick.
prop algorithm. The object then sends a message to itself to trigger the next epoch,
The error information from each output object is sent to the output analyst object.

Only a single output analyst object is created. It receives error information from
every output object at the end of each epoch. The output analyst determines wheth-
er or not the output units are continuing to make progress. If not, then the output,

analyst sends a message to each output object which causes that output object to
stop cycling through the test patterns. Receipt of this message also causes each out-
put object to send error information to each candidate object in the candidate pool.

When the candidate objects receive error information from the output objects, the
simulation leaves the output unit training phase and enters the candidate unit
training phase of execution (see Figure 2). During this new phase, the output units
are idle and the candidate units are active, As each candidate object passes through
an epoch, it measures the correlation of its output with the error information passecl
to it, and then adjusts its weights to maximize that correlation. At the end of an
epoch, each candidate object sends a message to itself in order to trigger the next
epoch. The candidate object also sends a message to the candidate analvst to re~ort.—
its correlation value.

output unit 1

output unit 2

●

●
output analyst

●

output unit n

Output unit training phase

candidate unit 1

candidate unit 2

●

●
candidate analyst

●

candidate unit m

Candidate unit training phase

Figure 2

,.

As with the output analyst, only a single candidate analyst object is created. All
candidate objects report their correlation values to the candidate analyst at the end
of each candidate epoch. When the candidate analyst determines that little or no
additional progress is being made with each epoch, it sends messages to all the can-
didate units to stop cycling. The candidate analyst also selects which candidate has
the best score, and sends a “win” message to that candidate.

When a candidate object receives a “win” message, it makes one final pass through
the training patterns. Using its current weights, it produces a “value” array which
contains the value of the candidate unit’s output corresponding to each training pat-
tern. In the current implementation, the candidate unit is not actually added to the
network as a hidden unit. Instead, each of the training patterns is effectively en-
larged by the appropriate entry from this “value” array. It is possible to do this be-
cause the input weights belonging to hidden units are never modified in the cas-
cade-correlation algorithm. This technique uses more memory in each of the candi-
date and output objects, but allows a greater degree of parallelism.

The “value” array from the selected candidate object is passed to all output objects
and all candidate objects. The receipt of this message signals the output units to
begin retraining. The program then exits the candidate unit training phase, and re-
enters the output unit training phase. The entire program terminates when the
output analyst determines that the error from the output units is sufficiently small.

Each of the objects has a state associated with it which contains variables used in
the simulation. These variables contain status information (such as the current
epoch number) and parameter information (such as the epsilon value used for
quickprop). Additionally, the output and candidate objects have dynamically allo-
cated memory segments which are used to store weight information, correlation val-
ues, error values, etc.

All the objects share a read-only global data area. The program sets up this area in
the initialization stage of the simulation. The program reads a data file which con-
tains the training patterns as well as information on the number of inputs and out-
puts and certain parameter information. The contents of the data file are used to
initialize the read-only global data area.

As mentioned earlier, the read-only global data area can not be modified once the
body of the simulation begins. Mso mentioned previously was the statement that,
each of the training patterns is enlarged in place of adding a new hidden unit. Be-
cause the read-only area can not be modified, the enlarged portion of each training
pattern resides in a dynamically allocated segment of memory. One such segment
is associated with each output object and each candidate object.

5. Parallelism

The degree of parallelism in this application changes between the output unit train-
ing phase and the candidate unit training phase, Assuming the output analyst ob-
ject and each of the output objects are on different nodes, those objects can run in

. .. .

parallel. Because optimistic synchronization is used, each of the output objects can
forge ahead at its own rate, without waiting for the output analyst to decide wheth-
er to switch over to the next phase. So there is parallelism not only among the out-
put objects, but also between the output objects and the output analyst object. Once
the output analyst decides it is time to switch phases, it sends a message to each of
the output objects. The message causes each output object to roll back to the proper
simulation time and stop cycling.

Similarly, the candidate objects can also execute in parallel. Assuming all are on.
separate nodes, the candidate analyst is able to determine how far in the cycle to
proceed without holding up the progress of the candidate objects themselves. When
the candidate analyst determines that it is time to switch phases, it sends messages
to all the candidate objects which cause them to roll back to the proper simulation
time.

The maximum possible speedup is different for each of the two phases of the pro-
gram. While the program is in the output unit training phase, the speedup is limit-
ed by the number of output objects running in parallel, This in turn is a function of
the total number of output objects, and the number of output objects per node. Se-
quential execution time for this phase of the program can be described by the follow--
ing formula:

T, = ~ (Ai + Jj’ KiJ (3)
i=l.. c j=l..n

Here TI is the execution time for the output training phase, c the number of epochs
in this phase, Ai the execution time required by the output analyst object for each
epoch i, and K,j is the execution time used by output object j during epoch i. The
total number of output objects is represented by n.

To simplify speedup analysis, we can assume that each output unit has the same
amount of work to do in each epoch, that is K., = K, I for all x. We can also assume
that the execution time of the output analyst is less than the execution time of an
output object, unless the number of output units were to grow very large.

By having each output unit and the output analyst executing on its own node, the
smallest possible value for elapsed time would be the amount of time it takes an ob-
ject to execute, namely El.

(4)

Dividing (3) by (4) gives the maximum possible speedup for this phase, call it S,:

S,=)j’(Ai+ nKtJ /)j’Kt, = n +~Ai / ~Ki]
i i L i

(5)

Assuming Ai c Ki, as mentioned above, our maximum possible speedup with this

configuration is between n and n+l.

When the program is in the candidate unit training phase, the speedup is limited by
the number of candidate units running in parallel. Again, this is a function of the
total number of candidate objects as well as the number of candidate objects per
node, Speedup analysis is similar to the speedup analysis for the other phase. Se
quential execution time for the candidate unit training phase of the program can be
described by the following formula:

T2 = ~ (Bi + ~Lij)
i=f. d j=l..m

(6)

Here Tz is the execution time for the ‘candidate unit training phase, d the number of
epochs in this phase, 13i the execution time required by the candidate analyst object
for each epoch i, and L,~ is the execution time used by candidate object j during
epoch i. The total number of candidate objects in the pool is represented by m.

As above, we can assume that each candidate unit has the same amount of work to
do in each epoch, that is Lti = Li~ for all x. We can also assume that the execution
time of the candidate analyst is less than the execution time of a candidate object,
unless the number of candidate units were to grow very large.

By having each candidate unit and the candidate analyst executing on its own node,
the smallest possible value for elapsed time would be the amount of time it takes a
candidate to execute, namely Ez.

(7)

Dividing (6) by (7) gives the maximum possible speedup for the candidate unit
training phase. Calling this speed up S2 we have:

S~=~(Bi+ ~Li,) / ~Li,=m +~Bi /)jTLi, (8)1 i i i

Assuming 13i < ZJi, as mentioned above, our maximum possible speedup during this
phase with this configuration is between m and m+l.

Disregarding overhead, the total sequential execution time for the program would
be TI + T2. Calling this sum T, the formula for the maximum possible speedup S’ in
this configuration is:

S = (T, /T)S] + (T,/T)Sz (9)

6. Performance Measurements

The first goal in examining performance of this parallel implementation was to de-
termine how much overhead was introduced by rewriting the cascade correlation

program to work in the Time Warp environment. This was measured by comparing
the execution time of a standard C implementation against the execution time of a
sequential Time Warp implementation. The standard C implementation was writ-
ten by R. Scott Crowder, III, and is a public domain program available by ftp. The
sequential Time Warp version was created by running the Time Warp version of the
cascade correlation code in the Time Warp sequential simulator environment.

The sequential simulator executes code written for TWOS on a single processor in
the most efficient way possible. Because it runs on a single node, all events can be
run in proper time order, and there is no overhead for such activities as rollbacks or
state saving. The sequential simulator was specifically written for speedup mea-
surements.

To benchmark the different implementations of cascade-correlation I chose a learn-
ing task that had been worked on here at the Jet Propulsion Laboratory, and which
involved Space Shuttle sensor failure detection. This particular application has 9
inputs and 9 outputs, and 496 training patterns. The candidate pool contained 8
candidates.

The Crowder program took 2898 seconds to solve the benchmark problem on a Sun
3/60. In the process, it went through 877 output training epochs, and 86 candidate
training epochs. The sequential simulator version solved the same problem on the
same computer in 1993 seconds, using 503 output training epochs and 55 candidate
training epochs. (Even though the parameters used for each program were the
same, it proved impossible to force the two programs to reach a solution in the same
number of epochs because of the sensitivity of floating point results to inconsequen-

tial differences in program code.)

In this benchmark, candidate training epochs took the same amount of time to exe-
cute as did output training epochs, because although the benchmark used had 9 out-
put units and 8 candidate units in the candidate pool, this was balanced by the fact
that a candidate epoch executes slightly more code than an output epoch, Thus the
Crowder program executed a total of 963 epochs in 2898 seconds for an average of
3.01 seconds per epoch, while the figure for the sequential simulator is 3.57 seconds
per epoch. Comparing 3.57 with 3.01 we arrive at a figure of 19% for the extra over.
head involved in running a Time Warp version of cascade correlation.

Next to be examined was the amount of speedup realized by running the Time Warp
version on multiple nodes under TWOS. Here, the comparison was made between
the program running under the sequential simulator on one node as opposed to run-
ning under TWOS on multiple nodes. The hardware used in this case was the BBN
Butterfly, model GP1OOO. Because both the sequential simulator and TWOS ver-
sions used the same floating point code, elapsed time figures could be used for
speedup comparisons. The TWOS version was run on 10 nodes. This was dete~
mined to be the most efficient configuration for this particular benchmark because
the program cycled between two phases: in one phase nine output objects and one
analyst object executed simultaneously, and in the other phase eight candidate ob-
jects and one analyst object executed simultaneously.

>.

Onthe Butterfly, theelapsed time for the sequential simulator version of the pro-
gram was 2263 seconds. Running the program on 10 nodes under TWOS, the
elapsed time was 278 seconds. Dividing one time by the other results in a speedup
figure of 8.14. This compares well with the maximum theoretical speedup calculat-
ed in section 6. In this instance n in equation (5) is 9 and m in equation (8) is 8.
From equation (9) we can deduce that the maximum speedup would be in the range
of 8 to 10.

Note that in all the preceding time measurements, program setup time (which in-
cluded time for such activities as program forking and reading training patterns
into memory) was not included. These times were not included because the Butter-
fly computer being used did not parallelize these activities.

Acknowledgments

I would like to thank Sandeep Gulati of the Jet Propulsion Laboratory for motivat-
ing me to write this paper, and for his many helpful suggestions.

The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

,.*.,
. ,.

References

[11 Scott E, Fahlman and Christian Lebiere, “The Cascade-Correlation Learning
Architecture”, Advances in Neural Information Processing Systems 2, edited
by D. S. Touretzky, Morgan Kaufmarm, 1990.

[21 Marijke F. Augusteijn and Arturo S. Dimalanta, “Feature Detection in Satel-
lite Images Using Neural Network Technology”, 1992 Goddard Conference on
Space Applications of Artificial Intelligence, pp. 123-136.

[31 D. Whitley and N. Karunanithi, “Generalization in Feed Forward Neural
Networks”, 1991 International Joint Conference on Neural Networks, Vol. II,
pp. 77-82, July 1991, Seattle, WA.

[41 S. E. Fahlman, “Faster-Learning Variations on Back-Propagation: An Em-
pirical Study”, Proceedings of the 1988 Connectionist Models Summer School,
Morgan Kaufmann, 1988.

[51 Fujimoto, Richard M., “Parallel Discrete Event Simulation”, Communications
of the ACM, October, 1990.

[61 David Jefferson, et. al., “Distributed Simulation and the Time Warp Operat-
ing System,” Proceedings of the llth Annual Symposium on Operating Sys-
tems Principles, 1987.

